SWAT modeling of
Arroyo Colorado watershed

Narayanan Kannan

Texas AgriLife Research
(Texas A&M University System)
Temple
Need for the project

Arroyo Colorado failed to meet Texas water quality standards

- Low dissolved oxygen and high levels of bacteria - Fish kills

 • nutrient loading from agricultural fields
 • wastewater and storm water from urban areas
 • failing septic systems, untreated/poorly treated wastewater

Goal: Identify BMPs control poor water quality

Previous modeling effort:

Modeling of Arroyo Colorado watershed using HSPF model
Modeling period: 1988-1999

Recommendations: 90% reduction in Sediment, nitrogen and phosphorus reducing substances for 90% of times between March and October

TCEQ recommendations (2003): Reassessment of watershed using more data, recent data, sophisticated analysis
Soil and Water Assessment Tool (SWAT)

- developed by Dr. Jeff Arnold, Research Leader-USDA-ARS at Temple, TX

Model details
Physically based, Continuous simulation, Daily time step
Watershed and very large scale assessments, presently used in > 90 countries

Components
Flow, soil erosion, transport of sediment, nutrients, pesticides and bacteria

Processes
Crop growth, Evaporation, infiltration, runoff, soil water routing

Management operations
Crop rotation, Tillage, application of fertilizer, pesticides, irrigation water

Some unique features : auto-fertilizer application, auto-irrigation, auto-calibration

User Interfaces: AVSWAT, ArcSWAT (GIS interface) Windows
Data Sources

Elevation: United States Geological Survey (USGS) 30 m DEM

Soil map: USDA-NRCS

Land use: Spatial Sciences Lab, Texas A&M, College Station

Weather data: State Climatologist Office, Texas A&M

Flow: International Boundary and Water commission (IBWC)

Point Sources / Outfall: Texas Commission on Environmental Quality (TCEQ)

Water Quality data: TCEQ

Other data sources:

- Local offices in the valley
- Information from previous HSPF modeling effort
Model inputs for watershed delineation

Watershed boundary: Previous HSPF modeling work
Elevation information: 30 m USGS DEM

Digitized stream network
Watershed boundary and stream network

SWAT model set up—watershed boundary
Watershed area: 1692 km² (653 sq miles)

Comparison with previous HSPF watershed boundary

watershed boundary—HSPF
Sub-watersheds

SWAT model set up of Arroyo Colorado
Total number of sub-watersheds: 17

Comparison with previous HSPF sub watersheds
Land use map

Reclassified for SWAT model

Dominant land use classes

- Cultivated land 54%
- Brush-Range grasses 18.5%
- Urban 12.5%
- Water bodies 6%
- Sugarcane 4%

AGRL and AGRR: Agricultural land
FRST: Trees/Forest
WATR: Water body
ORCD: Orchard/Citrus
RNGB: Range grasses and brush
SUGC: Sugarcane
UCOM, UIDU, UINS, URHD, URLD, URML, UTRN: Urban
WETF, WETN: Wetland

crop rotation for 2004-2007 (Farm Service Agency-USDA)
- Dates of planting
- Irrigation
- Field/farm basis
Soil map – previous HSPF modeling work
Based on county soil survey USDA-SCS

Soil map – present SWAT model setup
SSURGO data : USDA-NRCS

Moderate permeability
Low permeability
Discretization of Arroyo Colorado into HRUs

Cultivated land in sub basin 6

Soil TX21519-1 in sub basin 6

HRU - Hydrologic Response Unit

Unique combination of land use and soil type

475 HRUs in SWAT model set up

Average: 28 HRUs per sub basin

Cultivated land with Soil TX21519-1
Crop rotation information

- **678 ac** Sorghum-sorghum-sorghum-sorghum-sorghum
- **420 ac** Grass-grass-grass-grass-grass
- **262 ac** Cotton-sorghum-fallow-fallow-fallow

Model simulates crop growth

Tillage: mainly cultivator, deep chiseling after sugarcane harvest

Fertilizer application: auto-fertilizer application option used

Irrigation: auto-irrigation application used
List of management operations

Management Data:
Generic HRU

General Parameters:
- Initial Land Cover Status: No land cover growing

BIOMUX: 0.20
USLE_P: 1.00
BIO_MIN: 0.00
FILTERW: 0.000
CN2: 89.00

Operations:
- Schedule by Date
- Schedule by Heat Units

<table>
<thead>
<tr>
<th>Year</th>
<th>Operation</th>
<th>Crop</th>
<th>Month</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Plant/begin. growing season</td>
<td>GRSG</td>
<td>March</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Harvest and kill</td>
<td></td>
<td>August</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Tillage</td>
<td></td>
<td>February</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Plant/begin. growing season</td>
<td>GRSG</td>
<td>February</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Harvest and kill</td>
<td></td>
<td>June</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>Tillage</td>
<td></td>
<td>March</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>Plant/begin. growing season</td>
<td>GRSG</td>
<td>March</td>
<td>15</td>
</tr>
</tbody>
</table>

Buttons:
- Load Scenario
- Save Scenario
- Urban
- Irrigation
- TileDrain
- Add Year
- Delete Year
- Add Operation
- Delete Operation
- Edit Operation
- Help
- Cancel
- OK
Location of rain and flow measurement gauges

- Mc Allen
- Mercedes
- Harlingen

△ Rain gauge ● flow gauge

Location of temperature gauges

- Mc Allen
- Harlingen

Modeling period: 2000-2006
Preliminary results for flow at Mercedes
Future tasks:

- Flow calibration
- Calibration for sediment, nutrients, water temperature, and dissolved oxygen
- Scenario trials to control water quality impairment
Data requirements

- Fertilizer application
 - rates and tentative dates for different crops

- Irrigation
 - timing, number of irrigations, water applied

For more details contact

254-774-6122

nkannan@brc.tamus.edu